Feeds:
Posts
Comments

Archive for the ‘wait… what?’ Category

Crowdsourcing our Responsible Data questions, challenges and lessons. (Photo courtesy of Amy O'Donnell).

Crowdsourcing our Responsible Data questions, challenges and lessons. (Photo by Amy O’Donnell).

At Catholic Relief Services’ ICT4D Conference in May 2016, I worked with Amy O’Donnell  (Oxfam GB) and Paul Perrin (CRS) to facilitate a participatory session that explored notions of Digital Privacy, Security and Safety. We had a full room, with a widely varied set of experiences and expertise.

The session kicked off with stories of privacy and security breaches. One person told of having personal data stolen when a federal government clearance database was compromised. We also shared how a researcher in Denmark scraped very personal data from the OK Cupid online dating site and opened it up to the public.

A comparison was made between the OK Cupid data situation and the work that we do as development professionals. When we collect very personal information from program participants, they may not expect that their household level income, health data or personal habits would be ‘opened’ at some point.

Our first task was to explore and compare the meaning of the terms: Privacy, Security and Safety as they relate to “digital” and “development.”

What do we mean by privacy?

The “privacy” group talked quite a bit about contextuality of data ownership. They noted that there are aspects of privacy that cut across different groups of people in different societies, and that some aspects of privacy may be culturally specific. Privacy is concerned with ownership of data and protection of one’s information, they said. It’s about who owns data and who collects and protects it and notions of to whom it belongs. Private information is that which may be known by some but not by all. Privacy is a temporal notion — private information should be protected indefinitely over time. In addition, privacy is constantly changing. Because we are using data on our mobile phones, said one person, “Safaricom knows we are all in this same space, but we don’t know that they know.”

Another said that in today’s world, “You assume others can’t know something about you, but things are actually known about you that you don’t even know that others can know. There are some facts about you that you don’t think anyone should know or be able to know, but they do.” The group mentioned website terms and conditions, corporate ownership of personal data and a lack of control of privacy now. Some felt that we are unable to maintain our privacy today, whereas others felt that one could opt out of social media and other technologies to remain in control of one’s own privacy. The group noted that “privacy is about the appropriate use of data for its intended purpose. If that purpose shifts and I haven’t consented, then it’s a violation of privacy.”

What do we mean by security?

The Security group considered security to relate to an individual’s information. “It’s your information, and security of it means that what you’re doing is protected, confidential, and access is only for authorized users.” Security was also related to the location of where a person’s information is hosted and the legal parameters. Other aspects were related to “a barrier – an anti-virus program or some kind of encryption software, something that protects you from harm…. It’s about setting roles and permissions on software and installing firewalls, role-based permissions for accessing data, and cloud security of individuals’ data.” A broader aspect of security was linked to the effects of hacking that lead to offline vulnerability, to a lack of emotional security or feeling intimidated in an online space. Lastly, the group noted that “we, not the systems, are the weakest link in security – what we click on, what we view, what we’ve done. We are our own worst enemies in terms of keeping ourselves and our data secure.”

What do we mean by safety?

The Safety group noted that it’s difficult to know the difference between safety and security. “Safety evokes something highly personal. Like privacy… it’s related to being free from harm personally, physically and emotionally.” The group raised examples of protecting children from harmful online content or from people seeking to harm vulnerable users of online tools. The aspect of keeping your online financial information safe, and feeling confident that a service was ‘safe’ to use was also raised. Safety was considered to be linked to the concept of risk. “Safety engenders a level of trust, which is at the heart of safety online,” said one person.

In the context of data collection for communities we work with – safety was connected to data minimization concepts and linked with vulnerability, and a compounded vulnerability when it comes to online risk and safety. “If one person’s data is not safely maintained it puts others at risk,” noted the group. “And pieces of information that are innocuous on their own may become harmful when combined.” Lastly, the notion of safety as related to offline risk or risk to an individual due to a specific online behavior or data breach was raised.

It was noted that in all of these terms: privacy, security and safety, there is an element of power, and that in this type of work, a power relations analysis is critical.

The Digital Data Life Cycle

After unpacking the above terms, Amy took the group through an analysis of the data life cycle (courtesy of the Engine Room’s Responsible Data website) in order to highlight the different moments where the three concepts (privacy, security and safety) come into play.

Screen Shot 2016-05-25 at 6.51.50 AM

  • Plan/Design
  • Collect/Find/Acquire
  • Store
  • Transmit
  • Access
  • Share
  • Analyze/use
  • Retention
  • Disposal
  • Afterlife

Participants added additional stages in the data life cycle that they passed through in their work (coordinate, monitor the process, monitor compliance with data privacy and security policies). We placed the points of the data life cycle on the wall, and invited participants to:

  • Place a pink sticky note under the stage in the data life cycle that resonates or interests them most and think about why.
  • Place a green sticky note under the stage that is the most challenging or troublesome for them or their organizations and think about why.
  • Place a blue sticky note under the stage where they have the most experience, and to share a particular experience or tip that might help others to better manage their data life cycle in a private, secure and safe way.

Challenges, concerns and lessons

Design as well as policy are important!

  • Design drives everScreen Shot 2016-05-25 at 7.21.07 AMything else. We often start from the point of collection when really it’s at the design stage when we should think about the burden of data collection and define what’s the minimum we can ask of people? How we design – even how we get consent – can inform how the whole process happens.
  • When we get part-way through the data life cycle, we often wish we’d have thought of the whole cycle at the beginning, during the design phase.
  • In addition to good design, coordination of data collection needs to be thought about early in the process so that duplication can be reduced. This can also reduce fatigue for people who are asked over and over for their data.
  • Informed consent is such a critical issue that needs to be linked with the entire process of design for the whole data life cycle. How do you explain to people that you will be giving their data away, anonymizing, separating out, encrypting? There are often flow down clauses in some contracts that shifts responsibilities for data protection and security and it’s not always clear who is responsible for those data processes? How can you be sure that they are doing it properly and in a painstaking way?
  • Anonymization is also an issue. It’s hard to know to what level to anonymize things like call data records — to the individual? Township? District Level? And for how long will anonymization actually hold up?
  • The lack of good design and policy contributes to overlapping efforts and poor coordination of data collection efforts across agencies. We often collect too much data in poorly designed databases.
  • Policy is not enough – we need to do a much better job of monitoring compliance with policy.
  • Institutional Review Boards (IRBs) and compliance aspects need to be updated to the new digital data reality. At the same time, sometimes IRBs are not the right instrument for what we are aiming to achieve.

Data collection needs more attention.

  • Data collection is the easy part – where institutions struggle is with analyzing and doing something with the data we collect.
  • Organizations often don’t have a well-structured or systematic process for data collection.
  • We need to be clearer about what type of information we are collecting and why.
  • We need to update our data protection policy.

Reasons for data sharing are not always clear.

  • How can share data securely and efficiently without building duplicative systems? We should be thinking more during the design and collection phase about whether the data is going to be interoperable and who needs to access it.
  • How can we get the right balance in terms of data sharing? Some donors really push for information that can put people in real danger – like details of people who have participated in particular programs that would put them at risk with their home governments. Organizations really need to push back against this. It’s an education thing with donors. Middle management and intermediaries are often the ones that push for this type of data because they don’t really have a handle on the risk it represents. They are the weak points because of the demands they are putting on people. This is a challenge for open data policies – leaving it open to people leaves it to doing the laziest job possible of thinking about the potential risks for that data.
  • There are legal aspects of sharing too – such as the USAID open data policy where those collecting data have to share with the government. But we don’t have a clear understanding of what the international laws are about data sharing.
  • There are so many pressures to share data but they are not all fully thought through!

Data analysis and use of data are key weak spots for organizations.

  • We are just beginning to think through capturing lots of data.
  • Data is collected but not always used. Too often it’s extractive data collection. We don’t have the feedback loops in place, and when there are feedback loops we often don’t use the the feedback to make changes.
  • We forget often to go back to the people who have provided us with data to share back with them. It’s not often that we hold a consultation with the community to really involve them in how the data can be used.

Secure storage is a challenge.

  • We have hundreds of databases across the agency in various formats, hard drives and states of security, privacy and safety. Are we able to keep these secure?
  • We need to think more carefully about where we hold our data and who has access to it. Sometimes our data is held by external consultants. How should we be addressing that?

Disposing of data properly in a global context is hard!

  • Screen Shot 2016-05-25 at 7.17.58 AMIt’s difficult to dispose of data when there are multiple versions of it and a data footprint.
  • Disposal is an issue. We’re doing a lot of server upgrades and many of these are remote locations. How do we ensure that the right disposal process is going on globally, short of physically seeing that hard drives are smashed up!
  • We need to do a better job of disposal on personal laptops. I’ve done a lot of data collection on my personal laptop – no one has ever followed up to see if I’ve deleted it. How are we handling data handover? How do you really dispose of data?
  • Our organization hasn’t even thought about this yet!

Tips and recommendations from participants

  • Organizations should be using different tools. They should be using Pretty Good Privacy techniques rather than relying on free or commercial tools like Google or Skype.
  • People can be your weakest link if they are not aware or they don’t care about privacy and security. We send an email out to all staff on a weekly basis that talks about taking adequate measures. We share tips and stories. That helps to keep privacy and security front and center.
  • Even if you have a policy the hard part is enforcement, accountability, and policy reform. If our organizations are not doing direct policy around the formation of best practices in this area, then it’s on us to be sure we understand what is best practice, and to advocate for that. Let’s do what we can before the policy catches up.
  • The Responsible Data Forum and Tactical Tech have a great set of resources.
  • Oxfam has a Responsible Data Policy and Girl Effect have developed a Girls’ Digital Privacy, Security and Safety Toolkit that can also offer some guidance.

In conclusion, participants agreed that development agencies and NGOs need to take privacy, security and safety seriously. They can no longer afford to implement security at a lower level than corporations. “Times are changing and hackers are no longer just interested in financial information. People’s data is very valuable. We need to change and take security as seriously as corporates do!” as one person said.

 

 

Read Full Post »

At our April 5th Salon in Washington, DC we had the opportunity to take a closer look at open data and privacy and discuss the intersection of the two in the framework of ‘responsible data’. Our lead discussants were Amy O’Donnell, Oxfam GB; Rob Baker, World Bank; Sean McDonald, FrontlineSMS. I had the pleasure of guest moderating.

What is Responsible Data?

We started out by defining ‘responsible data‘ and some of the challenges when thinking about open data in a framework of responsible data.

The Engine Room defines ‘responsible data’ as

the duty to ensure people’s rights to consent, privacy, security and ownership around the information processes of collection, analysis, storage, presentation and reuse of data, while respecting the values of transparency and openness.

Responsible Data can be like walking a tightrope, noted our first discussant, and you need to find the right balance between opening data and sharing it, all the while being ethical and responsible. “Data is inherently related to power – it can create power, redistribute it, make the powerful more powerful or further marginalize the marginalized. Getting the right balance involves asking some key questions throughout the data lifecycle from design of the data gathering all the way through to disposal of the data.

How can organizations be more responsible?

If an organization wants to be responsible about data throughout the data life cycle, some questions to ask include:

  • In whose interest is it to collect the data? Is it extractive or empowering? Is there informed consent?
  • What and how much do you really need to know? Is the burden of collecting and the liability of storing the data worth it when balanced with the data’s ability to represent people and allow them to be counted and served? Do we know what we’ll actually be doing with the data?
  • How will the data be collected and treated? What are the new opportunities and risks of collecting and storing and using it?
  • Why are you collecting it in the first place? What will it be used for? Will it be shared or opened? Is there a data sharing MOU and has the right kind of consent been secured? Who are we opening the data for and who will be able to access and use it?
  • What is the sensitivity of the data and what needs to be stripped out in order to protect those who provided the data?

Oxfam has developed a data deposit framework to help assess the above questions and make decisions about when and whether data can be open or shared.

(The Engine Room’s Responsible Development Data handbook offers additional guidelines and things to consider)

(See: https://wiki.responsibledata.io/Data_in_the_project_lifecycle for more about the data lifecycle)

Is ‘responsible open data’ an oxymoron?

Responsible Data policies and practices don’t work against open data, our discussant noted. Responsible Data is about developing a framework so that data can be opened and used safely. It’s about respecting the time and privacy of those who have provided us with data and reducing the risk of that data being hacked. As more data is collected digitally and donors are beginning to require organizations to hand over data that has been collected with their funding, it’s critical to have practical resources and help staff to be more responsible about data.

Some disagreed that consent could be truly informed and that open data could ever be responsible since once data is open, all control over the data is lost. “If you can’t control the way the data is used, you can’t have informed people. It’s like saying ‘you gave us permission to open your data, so if something bad happens to you, oh well….” Informed consent is also difficult nowadays because data sets are being used together and in ways that were not possible when informed consent was initially obtained.

Others noted that standard informed consent practices are unhelpful, as people don’t understand what might be done with their data, especially when they have low data literacy. Involving local communities and individuals in defining what data they would like to have and use could make the process more manageable and useful for those whose data we are collecting, using and storing, they suggested.

One person said that if consent to open data was not secured initially; the data cannot be opened, say, 10 years later. Another felt that it was one thing to open data for a purpose and something entirely different to say “we’re going to open your data so people can do fun things with it, to play around with it.”

But just what data are we talking about?

USAID was questioned for requiring grantees to share data sets and for leaning towards de-identification rather than raising the standard to data anonymity. One person noted that at one point the agency had proposed a 22-step process for releasing data and even that was insufficient for protecting program participants in a risky geography because “it’s very easy to figure out who in a small community recently received 8 camels.” For this reason, exclusions are an important part of open data processes, he said.

It’s not black or white, said another. Responsible open data is possible, but openness happens along a spectrum. You have financial data on the one end, which should be very open as the public has a right to know how its tax dollars are being spent. Human subjects research is on the other end, and it should not be totally open. (Author’s note: The Open Knowledge Foundation definition of open data says: “A key point is that when opening up data, the focus is on non-personal data, that is, data which does not contain information about specific individuals.” The distinction between personal data, such as that in household level surveys, and financial data on agency or government activities seems to be blurred or blurring in current debates around open data and privacy.) “Open data will blow up in your face if it’s not done responsibly,” he noted. “But some of the open data published via IATI (the International Aid Transparency Initiative) has led to change.”

A participant followed this comment up by sharing information from a research project conducted on stakeholders’ use of IATI data in 3 countries. When people knew that the open data sets existed they were very excited, she said. “These are countries where there is no Freedom of Information Act (FOIA), and where people cannot access data because no one will give it to them. They trusted the US Government’s data more than their own government data, and there was a huge demand for IATI data. People were very interested in who was getting what funding. They wanted information for planning, coordination, line ministries and other logistical purposes. So let’s not underestimate open data. If having open data sets means that governments, health agencies or humanitarian organizations can do a better job of serving people, that may make for a different kind of analysis or decision.”

‘Open by default’ or ‘open by demand’?

Though there are plenty of good intentions and rationales for open data, said one discussant, ‘open by default’ is a mistake. We may have quick wins with a reduction in duplicity of data collection, but our experiences thus far do not merit ‘open by default’. We have not earned it. Instead, he felt that ‘open by demand’ is a better idea. “We can put out a public list of the data that’s available and see what demand for data comes in. If we are proactive on what is available and what can be made available, and we monitor requests, we can avoid putting out information that no one is interested in. This would lower the overhead on what we are releasing. It would also allow us to have a conversation about who needs this data and for what.”

One participant agreed, positing that often the only reason that we collect data is to provide proof and evidence that we’re doing our job, spending the money given to us, and tracking back. “We tend to think that the only way to provide this evidence is to collect data: do a survey, talk to people, look at website usage. But is anyone actually using this data, this evidence to make decisions?”

Is the open data honeymoon over?

“We need to do a better job of understanding the impact at a wider level,” said another participant, “and I think it’s pretty light. Talking about open data is too general. We need to be more service oriented and problem driven. The conversation is very different when you are using data to solve a particular problem and you can focus on something tangible like service delivery or efficiency. Open data is expensive and not sustainable in the current setup. We need to figure this out.”

Another person shared results from an informal study on the use of open data portals around the world. He found around 2,500 open data portals, and only 3.8% of them use https (the secure version of http). Most have very few visitors, possibly due to poor Internet access in the countries whose open data they are serving up, he said. Several exist in countries with a poor Freedom House ranking and/or in countries at the bottom end of the World Bank’s Digital Dividends report. “In other words, the portals have been built for people who can’t even use them. How responsible is this?” he asked, “And what is the purpose of putting all that data out there if people don’t have the means to access it and we continue to launch more and more portals? Where’s all this going?”

Are we conflating legal terms?

Legal frameworks around data ownership were debated. Some said that the data belonged to the person or agency that collected it or paid for the cost of collecting in terms of copyright and IP. Others said that the data belonged to the individual who provided it. (Author’s note: Participants may have been referring to different categories of data, eg., financial data from government vs human subjects data.) The question was raised of whether informed consent for open data in the humanitarian space is basically a ‘contract of adhesion’ (a term for a legally binding agreement between two parties wherein one side has all the bargaining power and uses it to its advantage). Asking a person to hand over data in an emergency situation in order to enroll in a humanitarian aid program is akin to holding a gun to a person’s head in order to get them to sign a contract, said one person.

There’s a world of difference between ‘published data’ and ‘openly licensed data,’ commented our third discussant. “An open license is a complete lack of control, and you can’t be responsible with something you can’t control. There are ways to be responsible about the way you open something, but once it’s open, your responsibility has left the port.” ‘Use-based licensing’ is something else, and most IP is governed by how it’s used. For example, educational institutions get free access to data because they are educational institutions. Others pay and this subsidized their use of this data, he explained.

One person suggested that we could move from the idea of ‘open data’ to sub-categories related to how accessible the data would be and to whom and for what purposes. “We could think about categories like: completely open, licensed, for a fee, free, closed except for specific uses, etc.; and we could also specify for whom, whose data and for what purposes. If we use the term ‘accessible’ rather than ‘open’ perhaps we can attach some restrictions to it,” she said.

Is data an asset or a liability?

Our current framing is wrong, said one discussant. We should think of data as a toxic asset since as soon as it’s in our books and systems, it creates proactive costs and proactive risks. Threat modeling is a good approach, he noted. Data can cause a lot of harm to an organization – it’s a liability, and if it’s not used or stored according to local laws, an agency could be sued. “We’re far under the bar. We are not compliant with ‘safe harbor’ or ECOWAS regulations. There are libel questions and property laws that our sector is ignorant of. Our good intentions mislead us in terms of how we are doing things. There is plenty of room to build good practice here, he noted, for example through Civic Trusts. Another participant noted that insurance underwriters are already moving into this field, meaning that they see growing liability in this space.

How can we better engage communities and the grassroots?

Some participants shared examples of how they and their organizations have worked closely at the grassroots level to engage people and communities in protecting their own privacy and using open data for their own purposes. Threat modeling is an approach that helps improve data privacy and security, said one. “When we do threat modeling, we treat the data that we plan to collect as a potential asset. At each step of collection, storage, sharing process – we ask, ‘how will we protect those assets? What happens if we don’t share that data? If we don’t collect it? If we don’t delete it?’”

In one case, she worked with very vulnerable women working on human rights issues and together the group put together an action plan to protect its data from adversaries. The threats that they had predicted actually happened and the plan was put into action. Threat modeling also helps to “weed the garden once you plant it,” she said, meaning that it helps organizations and individuals keep an eye on their data, think about when to delete data, pay attention to what happens after data’s opened and dedicate some time for maintenance rather than putting all their attention on releasing and opening data.

More funding needs to be made available for data literacy for those whose data has been collected and/or opened. We need to help people think about what data is of use to them also. One person recalled hearing people involved in the creation of the Kenya Open Government Data portal say that the entire process was a waste of time because of low levels of use of any of the data. There are examples, however, of people using open data and verifying it at community level. For example, high school students in one instance found the data on all the so-called grocery stores in their community and went one-by-one checking into them, and identifying that some of these were actually liquor stores selling potato chips, not actual grocery stores. Having this information and engaging with it can be powerful for local communities’ advocacy work.

Are we the failure here? What are we going to do about it?

One discussant felt that ‘data’ and ‘information’ are often and easily conflated. “Data alone is not power. Information is data that is contextualized into something that is useful.” This brings into question the value of having so many data portals, and so much risk, when so little is being done to turn data into information that is useful to the people our sector says it wants to support and empower.

He gave the example of the Weather Channel, a business built around open data sets that are packaged and broadcast, which just got purchased for $2 billion. Channels like radio that would have provided information to the poor were not purchased, only the web assets, meaning that those who benefit are not the disenfranchised. “Our organizations are actually just like the Weather Channel – we are intermediaries who are interested in taking and using open data for public good.”

As intermediaries, we can add value in the dissemination of this open data, he said. If we have the skills, the intention and the knowledge to use it responsibly, we have a huge opportunity here. “However our enlightened intent has not yet turned this data into information and knowledge that communities can use to improve their lives, so are we the failure here? And if so, what are we doing about it? We could immediately begin engaging communities and seeing what is useful to them.” (See this article for more discussion on how ‘open’ may disenfranchise the poor.)

Where to from here?

Some points raised that merit further discussion and attention include:

  • There is little demand or use of open data (such as government data and finances) and preparing and maintaining data sets is costly – ‘open by demand’ may be a more appropriate approach than ‘open by default.’
  • There is a good deal of disagreement about whether data can be opened responsibly. Some of this disagreement may stem from a lack of clarity about what kind of data we are talking about when we talk about open data.
  • Personal data and human subjects data that was never foreseen to be part of “open data” is potentially being opened, bringing with it risks for those who share it as well as for those who store it.
  • Informed consent for personal/human subject data is a tricky concept and it’s not clear whether it is even possible in the current scenario of personal data being ‘opened’ and the lack of control over how it may be used now or in the future, and the increasing ease of data re-identification.
  • We may want to look at data as a toxic asset rather than a beneficial one, because of the liabilities it brings.
  • Rather than a blanket “open” categorization, sub-categorizations that restrict data sets in different ways might be a possibility.
  • The sector needs to improve its understanding of the legal frameworks around data and data collection, storage and use or it may start to see lawsuits in the near future.
  • Work on data literacy and community involvement in defining what data is of interest and is collected, as well as threat modeling together with community groups is a way to reduce risk and improve data quality, demand and use; but it’s a high-touch activity that may not be possible for every kind of organization.
  • As data intermediaries, we need to do a much better job as a sector to see what we are doing with open data and how we are using it to provide services and contextualized information to the poor and disenfranchised. This is a huge opportunity and we have not done nearly enough here.

The Technology Salon is conducted under Chatham House Rule so attribution has not been made in this post. If you’d like to attend future Salons, sign up here

 

Read Full Post »

Our March 18th Technology Salon NYC covered the Internet of Things and Global Development with three experienced discussants: John Garrity, Global Technology Policy Advisor at CISCO and co-author of Harnessing the Internet of Things for Global Development; Sylvia Cadena, Community Partnerships Specialist, Asia Pacific Network Information Centre (APNIC) and the Asia Information Society Innovation Fund (ISIF); and Andy McWilliams, Creative Technologist at ThoughtWorks and founder and director of Art-A-Hack and Hardware Hack Lab.

By Wilgengebroed on Flickr [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)%5D, via Wikimedia Commons

What is the Internet of Things?

One key task at the Salon was clarifying what exactly is the “Internet of Things.” According to Wikipedia:

The Internet of Things (IoT) is the network of physical objects—devices, vehicles, buildings and other items—embedded with electronics, software, sensors, and network connectivity that enables these objects to collect and exchange data.[1] The IoT allows objects to be sensed and controlled remotely across existing network infrastructure,[2] creating opportunities for more direct integration of the physical world into computer-based systems, and resulting in improved efficiency, accuracy and economic benefit;[3][4][5][6][7][8] when IoT is augmented with sensors and actuators, the technology becomes an instance of the more general class of cyber-physical systems, which also encompasses technologies such as smart grids, smart homes, intelligent transportation and smart cities. Each thing is uniquely identifiable through its embedded computing system but is able to interoperate within the existing Internet infrastructure. Experts estimate that the IoT will consist of almost 50 billion objects by 2020.[9]

As one discussant explained, the IoT involves three categories of entities: sensors, actuators and computing devices. Sensors read data in from the world for computing devices to process via a decision logic which then generates some type of action back out to the world (motors that turn doors, control systems that operate water pumps, actions happening through a touch screen, etc.). Sensors can be anything from video cameras to thermometers or humidity sensors. They can be consumer items (like a garage door opener or a wearable device) or industrial grade (like those that keep giant machinery running in an oil field). Sensors are common in mobile phones, but more and more we see them being de-coupled from cell phones and integrated into or attached to all manner of other every day things. The boom in the IoT means that in whereas in the past, a person may have had one URL for their desktop computer, now they might be occupying several URLs:  through their phone, their iPad, their laptop, their Fitbit and a number of other ‘things.’

Why does IoT matter for Global Development?

Price points for sensors are going down very quickly and wireless networks are steadily expanding — not just wifi but macro cellular technologies. According to one lead discussant, 95% of the world is covered by 2G and two-thirds by 3G networks. Alongside that is a plethora of technology that is wide range and low tech. This means that all kinds of data, all over the world, are going to be available in massive quantities through the IoT. Some are excited about this because of how data can be used to track global development indicators, for example, the type of data being sought to measure the Sustainable Development Goals (SDGs). Others are concerned about the impact of data collected via the IoT on privacy.

What are some examples of the IoT in Global Development?

Discussants and others gave many examples of how the IoT is making its way into development initiatives, including:

  • Flow meters and water sensors to track whether hand pumps are working
  • Protecting the vaccine cold chain – with a 2G thermometer, an individual can monitor the cold chain for local use and the information also goes directly to health ministries and to donors
  • Monitoring the environment and tracking animals or endangered species
  • Monitoring traffic routes to manage traffic systems
  • Managing micro-irrigation of small shareholder plots from a distance through a feature phone
  • As a complement to traditional monitoring and evaluation (M&E) — a sensor on a cook stove can track how often a stove is actually used (versus information an individual might provide using recall), helping to corroborate and reduce bias
  • Verifying whether a teacher is teaching or has shown up to school using a video camera

The CISCO publication on the IoT and Global Development provides many more examples and an overview of where the area is now and where it’s heading.

How advanced is the IoT in the development space?

Currently, IoT in global development is very much a hacker space, according to one discussant. There are very few off the shelf solutions that development or humanitarian organizations can purchase and readily implement. Some social enterprises are ramping up activity, but there is no larger ecosystem of opportunities for off the shelf products.

Because the IoT in global development is at an early phase, challenges abound. Technical issues, power requirements, reliability and upkeep of sensors (which need to be calibrated), IP issues, security and privacy, technical capacity, and policy questions all need to be worked out. One discussant noted that these challenges carry on from the mobile for development (m4d) and information and communication technologies for development (ICT4D) work of the past.

Participants agreed that challenges are currently huge. For example, devices are homogeneous, making them very easy to hack and affect a lot of devices at once. No one has completely gotten their head around the privacy and consent issues, which are are very different than those of using FB. There are lots of interoperability issues also. As one person highlighted — there are over 100 different communication protocols being used today. It is more complicated than the old “BetaMax v VHS” question – we have no idea at this point what the standard will be for IoT.

For those who see the IoT as a follow-on from ICT4D and m4d, the big question is how to make sure we are applying what we’ve learned and avoiding the same mistakes and pitfalls. “We need to be sure we’re not committing the error of just seeing the next big thing, the next shiny device, and forgetting what we already know,” said one discussant. There is plenty of material and documentation on how to avoid repeating past mistakes, he noted. “Read ICT works. Avoid pilotitis. Don’t be tech-led. Use open source and so on…. Look at the digital principles and apply them to the IoT.”

A higher level question, as one person commented, is around the “inconvenient truth” that although ICTs drive economic growth at the macro level, they also drive income inequality. No one knows how the IoT will contribute or create harm on that front.

Are there any existing standards for the IoT? Should there be?

Because there is so much going on with the IoT – new interventions, different sectors, all kinds of devices, a huge variety in levels of use, from hacker spaces up to industrial applications — there are a huge range of standards and protocols out there, said one discussant. “We don’t really want to see governments picking winners or saying ‘we’re going to us this or that.’ We want to see the market play out and the better protocols to bubble up to the surface. What’s working best where? What’s cost effective? What open protocols might be most useful?”

Another discussant pointed out that there is a legacy predating the IOT: machine-to-machine (M2M), which has not always been Internet based. “Since this legacy is still there. How can we move things forward with regard to standardization and interoperability yet also avoid leaving out those who are using M2M?”

What’s up with IPv4 and IPv6 and the IoT? (And why haven’t I heard about this?)

Another crucial technical point raised is that of IPv4 and IPv6, something that not many Salon participant had heard of, but that will greatly impact on how the IoT rolls out and expands, and just who will be left out of this new digital divide. (Note: I found this video to be helpful for explaining IPv4 vs IPv6.)

“Remember when we used Netscape and we understood how an IP number translated into an IP address…?” asked one discussant. “Many people never get that lovely experience these days, but it’s important! There is a finite number of IP4 addresses and they are running out. Only Africa and Latin America have addresses left,” she noted.

IPv6 has been around for 20 years but there has not been a serious effort to switch over. Yet in order to connect the next billion and the multiple devices that they may bring online, we need more addresses. “Your laptop, your mobile, your coffee pot, your fridge, your TV – for many of us these are all now connected devices. One person might be using 10 IP addresses. Multiply that by millions of people, and the only thing that makes sense is switching over to IPv6,” she said.

There is a problem with the technical skills and the political decisions needed to make that transition happen. For much of the world, the IoT will not happen very smoothly and entire regions may be left out of the IoT revolution if high level decision makers don’t decide to move ahead with IPv6.

What are some of the other challenges with global roll-out of IoT?

In addition to the IPv4 – IPv6 transition, there are all kinds of other challenges with the IoT, noted one discussant. The technical skills required to make the transition that would enable IoT in some regions, for example Asia Pacific, are sorely needed. Engineers will need to understand how to make this shift happen, and in some places that is going to be a big challenge. “Things have always been connected to the Internet. There are just going to be lots more, different things connected to the Internet now.”

One major challenge is that there are huge ethical questions along with security and connectivity holes (as I will outline later in this summary post, and as discussed in last year’s salon on Wearable Technologies). In addition, noted one discussant, if we are designing networks that are going to collect data for diseases, for vaccines, for all kinds of normal businesses, and put the data in the cloud, developing countries need to have the ability to secure the data, the computing capacity to deal with it, and the skills to do their own data analysis.

“By pushing the IoT onto countries and not supporting the capacity to manage it, instead of helping with development, you are again creating a giant gap. There will be all kinds of data collected on climate change in the Pacific Island Countries, for example, but the countries don’t have capacity to deal with this data. So once more it will be a bunch of outsiders coming in to tell the Pacific Islands how to manage it, all based on conclusions that outsiders are making based on sensor data with no context,” alerted one discussant. “Instead, we should be counseling our people, our countries to figure out what they want to do with these sensors and with this data and asking them what they need to strengthen their own capacities.”

“This is not for the SDGs and ticking off boxes,” she noted. “We need to get people on the ground involved. We need to decentralize this so that people can make their own decisions and manage their own knowledge. This is where the real empowerment is – where local people and country leaders know how to collect data and use it to make their own decisions. The thing here is ownership — deploying your own infrastructure and knowing what to do with it.”

How can we balance the shiny devices with the necessary capacities?

Although the critical need to invest in and support country-level capacity to manage the IoT has been raised, this type of back-end work is always much less ‘sexy’ and less interesting for donors than measuring some development programming with a flashy sensor. “No one wants to fund this capacity strengthening,” said one discussant. “Everyone just wants to fund the shiny sensors. This chase after innovation is really damaging the impact that technology can actually have. No one just lets things sit and develop — to rest and brew — instead we see everyone rushing onto the next big thing. This is not a good thing for a small country that doesn’t have the capacity to jump right into it.”

All kinds of things can go wrong if people are not trained on how to manage the IoT. Devices can be hacked and they may be collecting and sharing data without an individuals’ knowledge (see Geoff Huston on The Internet of Stupid Things). Electrical short outs, common in places with poor electricity ecosystems, can also cause big problems. In addition, the Internet is affected by legacy systems – so we need interoperability that goes backwards, said one discussant. “If we don’t make at least a small effort to respect those legacy systems, we’re basically saying ‘if you don’t have the funding to update your system, you’re out.’ This then reinforces a power dynamic where countries need the international community to give them equipment, or they need to buy this or buy that, and to bring in international experts from the outside….’ The pressure on poor countries to make things work, to do new kinds of M&E, to provide evidence is huge. With that pressure comes a higher risk of falling behind very quickly. We are also seeing pilot projects that were working just fine without fancy tech being replaced by new fangled tech-type programs instead of being supported over the longer term,” she said.

Others agreed that the development sector’s fascination with shiny and new is detrimental. “There is very little concern for the long-term, the legacy system, future upgrades,” said one participant. “Once the blog post goes up about the cool project, the sensors go bad or stop working and no one even knows because people have moved on.” Another agreed, citing that when visiting numerous clinics for a health monitoring program in one country, the running joke among the M&E staff was “OK, now let’s go and find the broken solar panel.” “When I think of the IoT,” she said, “I think of a lot of broken devices in 5 years.” The aspect of eWaste and the IoT has not even begun to be examined or quantified, noted another.

It is increasingly important for governments to understand how the Internet works, because they are making policy about it. Manufacturers need to better understand how the tech works on the ground, especially in different contexts that they are not accustomed to working in. Users need a better understanding of all of this because their privacy is at risk. Legal frameworks around data and national laws need more attention as well. “When you are working with restrictive governments, your organization’s or start-up’s idea might actually be illegal or close to a sedition law and you may end up in jail,” noted one discussant.

What choices will organizations need to make regarding the IoT?

When it comes to actually making decisions on how involved an organization should and can be in supporting or using the IoT, one critical choice will be related the suites of devices, said our third discussant. Will it be a cloud device? A local computing device? A computer?

Organizations will need to decide if they want a vendor that gives them a package, or if they want a modular, interoperable approach of units. They will need to think about aspects like whether they want to go with proprietary or open source and will it be plug and play?

There are trade-offs here and key technical infrastructure choices will need to be made based on a certain level of expertise and experience. If organizations are not sure what they need, they may wish to get some advice before setting up a system or investing heavily.

As one discussant put it, “When I talk about the IOT, I often say to think about what the Internet was in the 90s. Think about that hazy idea we had of what the Internet was going to be. We couldn’t have predicted in the 90s what today’s internet would look like, and we’re in the same place with the IoT,” he said. “There will be seismic change. The state of the whole sector is immature now. There are very hard choices to make.”

Another aspect that’s representative of the IoT’s early stage, he noted, is that the discussion is all focusing on http and the Internet. “The IOT doesn’t necessarily even have to involve the Internet,” he said.

Most vendors are offering a solution with sensors to deploy, actuators to control and a cloud service where you log in to find your data. The default model is that the decision logic takes place there in the cloud, where data is stored. In this model, the cloud is in the middle, and the devices are around it, he said, but the model does not have to be that way.

Other models can offer more privacy to users, he said. “When you think of privacy and security – the healthcare maxim is ‘do no harm.’ However this current, familiar model for the IoT might actually be malicious.” The reason that the central node in the commercial model is the cloud is because companies can get more and more detailed information on what people are doing. IoT vendors and IoT companies are interested in extending their profiles of people. Data on what people do in their virtual life can now be combined with what they do in their private lives, and this has huge commercial value.

One option to look at, he shared, is a model that has a local connectivity component. This can be something like bluetooth mesh, for example. In this way, the connectivity doesn’t have to go to the cloud or the Internet at all. This kind of set-up may make more sense with local data, and it can also help with local ownership, he said. Everything that happens in the cloud in the commercial model can actually happen on a local hub or device that opens just for the community of users. In this case, you don’t have to share the data with the world. Although this type of a model requires greater local tech capacity and can have the drawback that it is more difficult to push out software updates, it’s an option that may help to enhance local ownership and privacy.

This requires a ‘person first’ concept of design. “When you are designing IOT systems, he said, “start with the value you are trying to create for individuals or organizations on the ground. And then implement the local part that you need to give local value. Then, only if needed, do you add on additional layers of the onion of connectivity, depending on the project.” The first priority here are the goals that the technology design will achieve for individual value, for an individual client or community, not for commercial use of people’s data.

Another point that this discussant highlighted was the need to conduct threat modeling and to think about unintended consequences. “If someone hacked this data – what could go wrong?” He suggested working backwards and thinking: “What should I take offline? How do I protect it better? How do I anonymize it better.”

In conclusion….

It’s critical to understand the purpose of an IoT project or initiative, discussants agreed, to understand if and why scale is needed, and to be clear about the drivers of a project. In some cases, the cloud is desirable for quicker, easier set up and updates to software. At the same time, if an initiative is going to be sustainable, then community and/or country capacity to run it, sustain it, keep it protected and private, and benefit from it needs to be built in. A big part of that capacity includes the ability to understand the different layers that surround the IoT and to make grounded decisions on the various trade-offs that will come to a head in the process of design and implementation. These skills and capacities need to be developed and supported within communities, countries and organizations if the IoT is to contribute ethically and robustly to global development.

Thanks to APNIC for sponsoring and supporting this Salon and to our friends at ThoughtWorks for hosting! If you’d like to join discussions like this one in cities around the world, sign up at Technology Salon

Salons are held under Chatham House Rule, therefore no attribution has been made in this post.

Read Full Post »

Facebook and its Internet.org initiative (now called ‘Free Basics’), have faced their fair share of criticism, but I’m guessing that neither is going away anytime soon. So, here’s something that may be of interest to folks working with and/or designing mobile tools for lower income populations or those with lower end phones.

Praekelt Foundation is partnering with Facebook on an open source toolkit of technologies and strategies that will open the Free Basics platform to more organizations and/or tech developers to adapt existing services or create new ones for distribution through the web and the Free Basics platform.

Praekelt Foundation will be running this incubator for Free Basics. It will provide 100 social change organizations with tools, service and support worth a total of $200,000. The tools and lessons that emerge will be shared with the public in 2016.

Praekelt is working with a broad range of experts in international development, user experience, mobile technology and digital safety and security to create an independent panel that will be responsible for selecting the members of the incubator from an open call to developers, social enterprises and NGOs. Disclosure: I’ve been asked (and agreed) to join the selection panel and will be involved in reviewing applications. I have also provided input into the topic areas.

Applications are sought in the areas of health, education, agriculture, economic empowerment, gender equality, citizen engagement and others. The aim is to enhance information and services available via low-end phones for low-income communities, youth, women and girls, healthcare workers and/or other frontline staff, refugees and migrants, and/or the LGBTQI population. This might include provision of information about and/or access to things like financial services, medical services, advocacy initiatives, citizen engagement efforts, behavior change communications and support and/or counseling.

For questions, comments, or to find out more about the initiative, here’s Praekelt Foundation’s blog and a link to the call for proposals and the application form.

(I’m also interested in feedback to improve on the idea and process, etc., so feel free to get in touch with me also if you have comments.)

 

Read Full Post »

At our November 18th Technology Salon, we discussed how different organizations are developing their ICT for development (ICT4D) strategies. We shared learning on strategy development and buy-in, talked about whether organizations should create special teams or labs for ICT- and innovation-related work or mainstream the ICT4D function, and thought about how organizations can define and find the skill sets needed for taking their ICT-enabled work forward. Population Council’s Stan Mierzwa, Oxfam America’s Neal McCarthy, and Cycle Technologies’ Leslie Heyer joined as lead discussants, and we heard from Salon participants about their experiences too.

Participating organizations were at various stages of ICT4D work, but most had experienced similar challenges and frustrations with taking their work forward. Even organizations that had created ICT4D strategies a couple of years ago said that implementation was slow.

Some of the key elements mentioned by our first discussant as important for managing and strategically moving ICT forward in an organization included:

  • being more informed about where different offices and staff were using ICTs for programmatic work,
  • establishing a standard set of technology tools for organizational use,
  • improved knowledge management about ICTs,
  • publishing on how ICTs were being used in programs (to help with credibility),
  • engaging with different teams and leadership to secure support and resources
  • working more closely with human resources teams who often do not understand ICT4D-related job descriptions and the profile needed.

Our second discussant said that his organization developed an ICT4D strategy in order to secure resources and greater support for moving ICT4D forward. It was also starting to be unwieldy to manage all of the different ideas and tools being used across the organization, and it seemed that greater harmonization would allow for improved IT support for more established tools as well as establishment of other ways to support new innovations.

In this case, the organization looked at ICTs as two categories: technology for development workers and technology for development outcomes. They used Gartner’s ‘pace layered’ model (which characterizes systems of innovation, systems of differentiation, and systems of record) as a way of analyzing the support roles of different departments.

One of the initial actions taken by this organization was establishing a small tech incubation fund that different offices could apply for in order to try something new with ICTs in their programs and campaigns. Another action was to take 10 staff to the Catholic Relief Services (CRS) ICT4D conference to learn more about ICT4D and to see what their peers from similar organizations were doing. In return for attending the conference, staff were required to submit a proposal for the tech incubation fund.

For the development of the strategy document and action plan, the ICT4D strategy team worked with a wider group of staff to develop a list of current ICT-enabled initiatives and a visual heat map of actions and activities across the organization. This formed the basis for discussions on where lots of ICT4D activities were happening and where there was nothing going on with ICTs. The team then discussed what the organization should do strategically to support and potentially consolidate existing activities and what should be done about areas where there were few ICT-related activities – should those areas be left alone or was there a reason to look at them to see if ICT should be incorporated?

Having done that, the organization adapted Nethope’s Organizational Guide to ICT4D to fit its own structure and culture, and used it as a framework for ICT4D strategy discussions with key staff from different teams. The Nethope guide suggests five key functions for strategic, organization-wide ICT4D: lead organizational change, drive knowledge exchange, build a portfolio, manage processes, and develop an advisory service (see below). The aforementioned activities were also clustered according to which of these 5 areas they fell into.

Screen Shot 2015-11-24 at 8.53.12 AM

(Table of contents from Nethope’s Guide.)

The organization felt it was also important to change the image of the IT team. ‘We had to show that we were not going to tie people up with formal committees and approvals if they wanted to try something new and innovative. Being more approachable is necessary or staff will bypass the IT team and go to consultants, and then we open ourselves up to data privacy risks and we also lose institutional knowledge.’

Salon participants agreed that it was important to know how to “sell” an ICT4D-related idea to frontline staff, management and leadership. Some ways to do this include demonstrating the value-add of ICTs in terms of longer-term cost and time efficiencies, showing the benefit of real-time data for decision-making, and demonstrating what peer organizations are doing. Organizations often also need someone at the top who is pushing for change and modernization.

Our third discussant said that her company has been shifting from a commercial product developer to a full-fledged technology company. She outlined the need for strategic thinking along that journey. Initially, the company outsourced activities such as research and data collection. With time, it started to pull key functions in house since systems maintenance and technology has become a core part of the business.

“As a small company, we can be flexible and change easily,” she said. ‘ICT is embedded into our culture and everyone thinks about it.’ One challenge that many ICT4D initiatives face – whether they are happening in a non-profit or a for-profit — is sustainability. ‘People are often fine with paying for a physical product, but when it comes to the web, they are accustomed to getting everything for free, which makes long-term sustainability difficult.’

In order to continuously evolve their strategies, organizations need to have time and space to constantly step back and think about their underlying values and where they see themselves in 5 or 10 years. A more pro-active relationship with donors is also important. Although Salon participants felt that the ICT4D Principles and related processes were promising, they also felt that donors do not have a clear idea of what they are looking for, what exists already, what needs to be created, and what evidence base exists for different tools or kinds of ICT4D. One Salon participant felt that ‘donor agencies don’t know what kinds of tech are effective, so it’s up to you as an implementer to bring the evidence to the table. It’s critical to have the ITC4D support staff at the table with you, because if not these more detailed conversations about the tech don’t happen with donors and you’ll find all kinds of duplication of efforts.’

Another challenge with thinking about ICT4D in a strategic way is that donors normally don’t want to fund capacity building, said another Salon participant. They prefer to fund concrete projects or innovation challenges rather than supporting organizations to create an environment that gives rise to innovation. In addition, funding beyond the program cycle is a big challenge. ‘We need to be thinking about enterprise systems, layered on systems, national systems,’ said one person. ‘And systems really struggle here to scale and grow if you can’t claim ownership for the whole.’

Salon participants highlighted hiring and human resources departments as a big barrier when it comes to ICT4D. It is often not clear what kinds of skills are needed to implement ICT4D programs, and human resources teams often screen for the wrong skill sets because they do not understand the nature of ICT4D. ‘I always make them give me all the CVs and screen them myself,’ said one person. ‘If not, some of the best people will not make it to the short list.’ Engaging with human resources and sharing the ICT4D strategy is one way to help with better hiring and matching of job needs with skill sets that are out there and potentially difficult to find.

In conclusion, whether the ICT4D strategy is to mainstream, to isolate and create a ‘lab,’ or to combine approaches, it seems that most organizations are struggling a bit to develop and/or implement ICT4D strategies due to the multiple pain points of slow organizational change and the need for more capacity and resources. Some are making headway, however, and developing clearer thinking and action plans that are paying off in the short term, and that may set the organizations up for eventual ICT4D success.

Thanks to Population Council for hosting this Salon! If you’d like to join discussions like this one, sign up at Technology Salon.

Salons are held under Chatham House Rule. No attribution has been made in this post.

Read Full Post »

Traditional development evaluation has been characterized as ‘backward looking’ rather than forward looking and too focused on proving over improving. Some believe applying an ‘agile’ approach in development would be more useful — the assumption being that if you design a program properly and iterate rapidly and constantly based on user feedback and data analytics, you are more likely achieve your goal or outcome without requiring expensive evaluations. The idea is that big data could eventually allow development agencies to collect enough passive data about program participants that there would no longer be a need to actively survey people or conduct a final evaluation, because there would be obvious patterns that would allow implementers to understand behaviors and improve programs along the way.

The above factors have made some evaluators and data scientists question whether big data and real-time availability of multiple big data sets, along with the technology that enables their collection and analysis, will make evaluation as we know it obsolete. Others have argued that it’s not the end of evaluation, but rather we will see a blending of real-time monitoring, predictive modeling, and impact evaluation, depending on the situation. Big questions remain, however, about the feasibility of big data in some contexts. For example, are big data approaches useful when it comes to people who are not producing very much digital data? How will the biases in big data be addressed to ensure that the poorest, least connected, and/or most marginalized are represented?

The Technology Salon on Big Data and Evaluation hosted during November’s  American Evaluation Association Conference in Chicago opened these questions up for consideration by a roomful of evaluators and a few data scientists. We discussed the potential role of new kinds and quantities of data. We asked how to incorporate static and dynamic big data sources into development evaluation. We shared ideas on what tools, skills, and partnerships we might require if we aim to incorporate big data into evaluation practice. This rich and well-informed conversation was catalyzed by our lead discussants: Andrew Means, Associate Director of the Center for Data Science & Public Policy at the University of Chicago and Founder of Data Analysts for Social Good and The Impact Lab; Michael Bamberger, Independent Evaluator and co-author of Real World Evaluation; and Veronica Olazabal from The Rockefeller Foundation. The Salon was supported by ITAD via a Rockefeller Foundation grant.

What do we mean by ‘big data’?

The first task was to come up with a general working definition of what was understood by ‘big data.’ Very few of the organizations present at the Salon were actually using ‘big data’ and definitions varied. Some talked about ‘big data sets’ as those that could not be collected or analyzed by a human on a standard computer. Others mentioned that big data could include ‘static’ data sets (like government census data – if digitized — or cellphone record data) and ‘dynamic’ data sets that are being constantly generated in real time (such as streaming data input from sensors or ‘cookies’ and ‘crumbs’ generated through use of the Internet and social media). Others considered big data to be real time, socially-created and socially-driven data that could be harvested without having to purposely collect it or budget for its collection. ‘It’s data that has a life of its own. Data that just exists out there.’ Yet others felt that for something to be ‘big data’ multiple big data sets needed to be involved, for example, genetic molecular data crossed with clinical trial data and other large data sets, regardless of static or dynamic nature. Big data, most agreed, is data that doesn’t easily fit on a laptop and that requires a specialized skill set that most social scientists don’t have. ‘What is big data? It’s hard to define exactly, but I know it when I see it,’ concluded one discussant.

Why is big data a ‘thing’?

As one discussant outlined, recent changes in technology have given rise to big data. Data collection, data storage and analytical power are becoming cheaper and cheaper. ‘We live digitally now and we produce data all the time. A UPS truck has anywhere from 50-75 sensors on it to do everything from optimize routes to indicate how often it visits a mechanic,’ he said. ‘The analytic and computational power in my iPhone is greater than what the space shuttle had.’ In addition, we have ‘seamless data collection’ in the case of Internet-enabled products and services, meaning that a person creates data as they access products or services, and this can then be monetized, which is how companies like Google make their money. ‘There is not someone sitting at Google going — OK, Joe just searched for the nearest pizza place, let me enter that data into the system — Joe is creating the data about his search while he is searching, and this data is a constant stream.’

What does big data mean for development evaluation?

Evaluators are normally tasked with making a judgment about the merit of something, usually for accountability, learning and/or to improve service delivery, and usually looking back at what has already happened. In the wider sense, the learning from evaluation contributes to program theory, needs assessment, and many other parts of the program cycle.

This approach differs in some key ways from big data work, because most of the new analytical methods used by data scientists are good at prediction but not very good at understanding causality, which is what social scientists (and evaluators) are most often interested in. ‘We don’t just look at giant data sets and find random correlations,’ however, explained one discussant. ‘That’s not practical at all. Rather, we start with a hypothesis and make a mental model of how different things might be working together. We create regression models and see which performs better. This helps us to know if we are building the right hypothesis. And then we chisel away at that hypothesis.’

Some challenges come up when we think about big data for development evaluation because the social sector lacks the resources of the private sector. In addition, data collection in the world of international development is not often seamless because ‘we care about people who do not live in the digital world,’ as one person put it. Populations we work with often do not leave a digital trail. Moreover, we only have complete data about the entire population in some cases (for example, when it comes to education in the US), meaning that development evaluators need to figure out how to deal with bias and sampling.

Satellite imagery can bring in some data that was unavailable in the past, and this is useful for climate and environmental work, but we still do not have a lot of big data for other types of programming, one person said. What’s more, wholly machine-based learning, and the kind of ‘deep learning’ made possible by today’s computational power is currently not very useful for development evaluation.

Evaluators often develop counterfactuals so that they can determine what would have happened without an intervention. They may use randomized controlled trials (RCTs), differentiation models, statistics and economics research approaches to do this. One area where data science may provide some support is in helping to answer questions about counterfactuals.

More access to big data (and open data) could also mean that development and humanitarian organizations stop duplicating data collection functions. Perhaps most interestingly, big data’s predictive capabilities could in the future be used in the planning phase to inform the kinds of programs that agencies run, where they should be run, and who should be let into them to achieve the greatest impact, said one discussant. Computer scientists and social scientists need to break down language barriers and come together more often so they can better learn from one another and determine where their approaches can overlap and be mutually supportive.

Are we all going to be using big data?

Not everyone needs to use big data. Not everyone has the capacity to use it, and it doesn’t exist for offline populations, so we need to be careful that we are not forcing it where it’s not the best approach. As one discussant emphasized, big data is not magic, and it’s not universally applicable. It’s good for some questions and not others, and it should be considered as another tool in the toolbox rather than the only tool. Big data can provide clues to what needs further examination using other methods, and thus most often it should be part of a mixed methods approach. Some participants felt that the discussion about big data was similar to the one 20 years ago on electronic medical records or to the debate in the evaluation community about quantitative versus qualitative methods.

What about groups of people who are digitally invisible?

There are serious limitations when it comes to the data we have access to in the poorest communities, where there are no tablets and fewer cellphones. We also need to be aware of ‘micro-exclusion’ (who within a community or household is left out of the digital revolution?) and intersectionality (how do different factors of exclusion combine to limit certain people’s digital access?) and consider how these affect the generation and interpretation of big data. There is also a question about the intensity of the digital footprint: How much data and at what frequency is it required for big data to be useful?

Some Salon participants felt that over time, everyone would have a digital presence and/or data trail, but others were skeptical. Some data scientists are experimenting with calibrating small amounts of data and comparing them to human-collected data in an attempt to make big data less biased, a discussant explained. Another person said that by digitizing and validating government data on thousands (in the case of India, millions) of villages, big data sets could be created for those that are not using mobiles or data.

Another person pointed out that generating digital data is a process that involves much more than simple access to technology. ‘Joining the digital discussion’ also requires access to networks, local language content, and all kinds of other precursors, she said. We also need to be very aware that these kinds of data collection processes impact on people’s participation and input into data collection and analysis. ‘There’s a difference between a collective evaluation activity where people are sitting around together discussing things and someone sitting in an office far from the community getting sound bites from a large source of data.’

Where is big data most applicable in evaluation?

One discussant laid out areas where big data would likely be the most applicable to development evaluation:

Screen Shot 2015-11-23 at 9.32.07 AM

It would appear that big data has huge potential in the evaluation of complex programs, he continued. ‘It’s fairly widely accepted that conventional designs don’t work well with multiple causality, multiple actors, multiple contextual variables, etc. People chug on valiantly, but it’s expected that you may get very misleading results. This is an interesting area because there are almost no evaluation designs for complexity, and big data might be a possibility here.’

In what scenarios might we use big data for development evaluation?

This discussant suggested that big data might be considered useful for evaluation in three areas:

  1. Supporting conventional evaluation design by adding new big data generated variables. For example, one could add transaction data from ATMs to conventional survey generated poverty indicators
  2. Increasing the power of a conventional evaluation design by using big data to strengthen the sample selection methodology. For example, satellite images were combined with data collected on the ground and propensity score matching was used to strengthen comparison group selection for an evaluation of the effects of interventions on protecting forest cover in Mexico.
  3. Replacing a conventional design with a big data analytics design by replacing regression based models with systems analysis. For example, one could use systems analysis to compare the effectiveness of 30 ongoing interventions that may reduce stunting in a sample of villages. Real-time observations could generate a time-series that could help to estimate the effectiveness of each intervention in different contexts.

It is important to remember construct validity too. ‘If big data is available, but it’s not quite answering the question that you want to ask, it might be easy to decide to do something with it, to run some correlations, and to think that maybe something will come out. But we should avoid this temptation,’ he cautioned. ‘We need to remember and respect construct validity and focus on measuring what we think we are measuring and what we want to measure, not get distracted by what a data set might offer us.’

What about bias in data sets?

We also need to be very aware that big data carries with it certain biases that need to be accounted for, commented several participants; notably, when working with low connectivity populations and geographies or when using data from social media sites that cater to a particular segment of the population. One discussant shared an example where Twitter was used to identify patterns in food poisoning, and suddenly the upscale, hipster restaurants in the city seemed to be the problem. Obviously these restaurants were not the sole source of the food poisoning, but rather there was a particular kind of person that tended to use Twitter.

‘People are often unclear about what’s magical and what’s really possible when it comes to big data. We want it to tell us impossible things and it can’t. We really need to engage human minds in this process; it’s not a question of everything being automated. We need to use our capacity for critical thinking and ask: Who’s creating the data? How’s it created? Where’s it coming from? Who might be left out? What could go wrong?’ emphasized one discussant. ‘Some of this information can come from the metadata, but that’s not always enough to make certain big data is a reliable source.’ Bias may also be introduced through the viewpoints and unconscious positions, values and frameworks of the data scientists themselves as they are developing algorithms and looking for/finding patterns in data.

What about the ethical and privacy implications?

Big Data has a great deal of ethical and privacy implications. Issues of consent and potential risk are critical considerations, especially when working with populations that are newly online and/or who may not have a good understanding of data privacy and how their data may be used by third parties who are collecting and/or selling it. However, one participant felt that a protectionist mentality is misguided. ‘We are pushing back and saying that social media and data tracking are bad. Instead, we should realize that having a digital life and being counted in the world is a right and it’s going to be inevitable in the future. We should be working with the people we serve to better understand digital privacy and help them to be more savvy digital citizens.’ It’s also imperative that aid and development agencies abandon our slow and antiquated data collection systems, she said, and to use the new digital tools that are available to us.

How can we be more responsible with the data we gather and use?

Development and humanitarian agencies do need be more responsible with data policies and practices, however. Big data approaches may contribute to negative data extraction tendencies if we mine data and deliver it to decision-makers far away from the source. It will be critical for evaluators and big data practitioners to find ways to engage people ‘on the ground’ and involve more communities in interpreting and querying their own big data. (For more on responsible data use, see the Responsible Development Data Book. Oxfam also has a responsible data policy that could serve as a reference. The author of this blog is working on a policy and practice guide for protecting girls digital safety, security and privacy as well.)

Who should be paying for big data sets to be made available?

One participant asked about costs and who should bear the expense of creating big data sets and/or opening them up to evaluators and/or data scientists. Others asked for examples of the private sector providing data to the social sector. This highlighted additional ethical and privacy issues. One participant gave an example from the healthcare space where there is lots of experience in accessing big data sets generated by government and the private sector. In this case, public and private data sets needed to be combined. There were strict requirements around anonymization and the effort ended up being very expensive, which made it difficult to build a business case for the work.

This can be a problem for the development sector, because it is difficult to generate resources for resolving social problems; there is normally only investment if there is some kind of commercial gain to be had. Some organizations are now hiring ‘data philanthropist’ positions that help to negotiate these kinds of data relationships with the private sector. (Global Pulse has developed a set of big data privacy principles to guide these cases.)

So, is big data going to replace evaluation or not?

In conclusion, big data will not eliminate the need for evaluation. Rather, it’s likely that it will be integrated as another source of information for strengthening conventional evaluation design. ‘Big Data and the underlying methods of data science are opening up new opportunities to answer old questions in new ways, and ask new kinds of questions. But that doesn’t mean that we should turn to big data and its methods for everything,’ said one discussant. ‘We need to get past a blind faith in big data and get more practical about what it is, how to use it, and where it adds value to evaluation processes,’ said another.

Thanks again to all who participated in the discussion! If you’d like to join (or read about) conversations like this one, visit Technology Salon. Salons run under Chatham House Rule, so no attribution has been made in this summary post.

Read Full Post »

I had the privilege (no pun intended) of participating in the Art-a-Hack program via ThoughtWorks this past couple of months. Art-a-Hack is a creative space for artists and hackers to get together for 4 Mondays in June and work together on projects that involve art, tech and hacking. There’s no funding involved, just encouragement, support, and a physical place to help you carve out some time out for discovery and exploration.

I was paired up by the organizers with two others (Dmytri and Juan), and we embarked on a project. I had earlier submitted an idea of the core issues that I wanted to explore, and we mind-melded really well to come up with a plan to create something around them.

Here is our press release with links to the final product – WhiteSave.me. You can read our Artist Statement here and follow us on Twitter @whitesave.me. Feedback welcome, and please share if you think it’s worth sharing. Needless to say full responsibility for the project falls with the team, and it does not represent the views of any past, present or future employers or colleagues.

*****

Announcing WhiteSave.me

WhiteSave.me is a revolutionary new platform that enables White Saviors to deliver privilege to non-Whites whenever and wherever they need it with the simple tap of a finger.

Today’s White guy is increasingly told “check your privilege.” He often asks himself “What am I supposed to do about my privilege? It’s not my fault I was born white! And really, I’m not a bad person!”

Until now, there has been no simple way for a White guy to be proactive in addressing the issue of his privilege. He’s been told that he benefits from biased institutions and that his privilege is related to historically entrenched power structures. He’s told to be an ally but advised to take a back seat and follow the lead from people of color. Unfortunately this is all complex and time consuming, and addressing privilege in this way is hard work.

We need to address the issue of White privilege now however – we can’t wait. Changing attitudes, institutions, policies and structures takes too damn long! What’s more, we can’t expect White men or our current systems to go through deep changes in order to address privilege and inequality at the roots. What we can do is leapfrog over what would normally require decades of grassroots social organizing, education, policy work, and behavior change and put the solution to White privilege directly into White men’s hands so that everyone can get back to enjoying the American dream.

Screen Shot 2015-07-24 at 5.31.10 PM

WhiteSave.me – an innovative solution that enables White men to quickly and easily deliver privilege to the underprivileged, requiring only a few minutes of downtime, at their discretion and convenience.

Though not everyone realizes it, White privilege affects a large number of White people, regardless of their age or political persuasion. White liberals generally agree that they are privileged, but most are simply tired of hearing about it and having to deal with it. Conservative White men believe their privilege is all earned, but most also consider it possible to teach people of color about deep-seated American values and traditions and the notion of personal responsibility. All told, what most White people want is a simple, direct way to address their privilege once and for all. Our research has confirmed that most White people would be willing to spend a few minutes every now and then sharing their privilege, as long as it does not require too much effort.

WhiteSave.me is a revolutionary and innovative way of addressing this issue. (Read Our Story here to learn more about our discovery moments!) We’ve designed a simple web and mobile platform that enables White men to quickly and easily deliver a little bit of their excess privilege to non-Whites, all through a simple and streamlined digital interface. Liberal Whites can assuage guilt and concern about their own privilege with the tap of a finger. Conservatives can feel satisfied that they have passed along good values to non-Whites. Libertarians can prove through direct digital action that tech can resolve complex issues without government intervention and via the free market. And non-White people of any economic status, all over the world, will benefit from immediate access to White privilege directly through their devices. Everyone wins – with no messy disruption of the status quo!

How it Works

Visit our “how it works” page for more information, or simply “try it now” and your first privilege delivery session is on us! Our patented Facial Color Recognition Algorithm (™) will determine whether you qualify as a White Savior, based on your skin color. (Alternatively it will classify you as a non-White ‘Savee’). Once we determine your Whiteness, you’ll be automatically connected via live video with a Savee who is lacking in White privilege so that you can share some of your good sense and privileged counsel with him or her, or periodically alleviate your guilt by offering advice and a one-off session of helping someone who is less privileged.

Our smart business model guarantees WhiteSave.me will be around for as long as it’s needed, and that we can continue innovating with technology to iterate new solutions as technology advances. WhiteSave.me is free for White Saviors to deliver privilege, and non-Whites can choose from our Third World Freemium Model (free), our Basic Model ($9/month), or our Premium Model ($29/month). To generate additional revenue, our scientific analysis of non-White user data will enable us to place targeted advertisements that allow investors and partners to extract value from the Base of the Pyramid. Non-Profit partners are encouraged to engage WhiteSave.me as their tech partner for funding proposals, thereby appearing innovative and guaranteeing successful grant revenue.

See our FAQs for additional information and check out our Success Stories for more on how WhiteSave.me, in just its first few months, has helped thousands to deliver privilege all over the world.

Try It Now and you’ll be immediately on your way to delivering privilege through our quick and easy digital solution!

Contact help@whitesave.me for more information. And please help us spread the word. Addressing the issue of White privilege has never been so easy!

 

Read Full Post »

Older Posts »

Follow

Get every new post delivered to your Inbox.

Join 909 other followers